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Abstract

A multiscale, hierarchical computational framework is presented for modeling homogeneous–heterogeneous reactors, which exhibit a
large disparity in length and time scales. Scales range from quantum, to atomistic, to mesoscopic, to macroscopic. The coupling mechanisms
between scales are discussed and illustrated with examples from CO and CH4 oxidation on platinum. Estimation of reaction mechanism
parameters, based on first principle quantum calculations and semi-empirical techniques, is briefly reviewed. These kinetic mechanisms
are key input into molecular, continuum, or mesoscopic models. Some emphasis is placed on surface diffusion, which typically falls
outside the realm of atomistic models, but it can affect reaction rates and pattern formation on catalytic surfaces. An efficient methodology
for parameter optimization of multiscale models is also presented. Finally, we show how mesoscopic models constitute a promising
alternative to atomistic Monte Carlo (MC) simulations to account for intermolecular forces, which cannot be properly captured through
continuum, mean field (MF) models. Application of these mesoscopic theories to microporous catalysts, such as zeolites, is also discussed.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Multiscale modeling in chemistry was born in 1913
by David Chapman and advocated by Bodenstein with
the introduction of pseudo- or quasi-steady state assump-
tion for intermediate species based on separation of time
scales[1]. Related concepts of partial equilibrium (PE) and
rate-determining step (RDS) are still often employed in de-
riving rate expressions of surface kinetics. Mathematically,
large activation energy asymptotics and perturbation tech-
niques in general, based on a small parameter, have been
used for decades to simplify transport (boundary layer)
and kinetics equations that extend over multiple scales
[2]. Flame modeling is an example of an area where both
chemistry and transport simplifications have been exten-
sively used[3]. Computationally, adaptive mesh refinement
is often employed to resolve fine scales in processes with
large disparity in length scales whereas techniques, such
as implicit solvers and operator splitting, have been devel-
oped to deal with stiffness of differential equations[4,5]. A
common feature of all these inherently multiscale problems
is that they have been treated within a unifying framework
of continuum equations of change. While such equations
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have served well numerous engineering applications, they
are often severely limited in predictability or they are even
structurally wrong as they neglect or treat phenomenolog-
ically phenomena related to intermolecular forces, defects,
phase transformations, and so on[6].

The leap in computational power and numerical algo-
rithms enable a new multiscale reactor modeling paradigm
that goes beyond the simple separation of time and length
scales of continuum equations of change. In this new frame-
work, different scales are modeled using different modeling
approaches and tools (a hybrid approach), which are tradi-
tionally handled by groups having different research exper-
tise[7–9]. Examples include coupling of discrete molecular
modeling, such as molecular dynamics (MD) and stochastic
Monte Carlo (MC) simulations, with continuum equations
of change for macroscopic scales[10,11]. Accurate param-
eterization of molecular models demands information about
potential energy surfaces to extract intermolecular forces
and/or kinetic parameters. This information can be deduced
from various quantum mechanical and statistical mechanics
calculations (e.g. ab initio, density functional theory (DFT),
transition state theory (TST)), depending on accuracy and
computational cost. Aside from the quantum, molecular,
and continuum scales and models, phenomena in catalytic
(and other) chemical reactors often occur at large enough
length and time scales, which fall outside the realm of
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Nomenclature

a, b medium indicator terms
d diffusion coefficient at high (infinite)

temperature
D diffusion coefficient
Dgi gas-phase dissociation energy of speciesi
E activation energy
J interaction potential in a homogeneous medium
k Boltzmann constant
K intermolecular potential of adsorbate–adsorbate

(lateral) interactions
ki rate constant forith reaction type
p probability
P reactant partial pressure
Qi heat of chemisorption of speciesi
r, r′ distances
t time
T temperature
u dimensionless concentration (coverage)
U0 energy associated with the binding to the

catalyst
W transition probability per unit time
x macroscopic space variable
y microscopic space variable
Y periodic domain

Greek symbols
α, β surface configurations
δ Kronecker function
�Hrxn heat of reaction
� domain

Subscripts
a adsorption
b backward
d desorption
f forward
o leading order term in the Taylor expansion
r reaction

Superscript
eff effective

molecular models, but for which continuum constitutive
equations are lacking. This intermediate, vaguely understood
regime is often called the mesoscale and imposes major
challenges because a suitable mathematical and computa-
tional framework for such scales was till recently lacking.

The ultimate goal of this new multiscale framework is
unprecedented accuracy and the potential of having pre-
dictive capabilities from first principles without relying on
any fitting or experimental input. Both aspects are key in
guiding future experiments and enabling rational design and

model-based control of reactions and structures at the molec-
ular level. While, we are currently far from such goal, work
in progress will pave the way toward it.

There are two important classes of multiscale models. The
first one encompasses problems where information gathered
at the small scale is passed into the next level up (bottom-up
approach), i.e. the information flow is uni-directional. In
some instances, this is sufficient. As an example, ab initio
calculation of reaction rate constants of gas-phase reactions
as functions of pressure and temperature requires no fur-
ther knowledge from the reactor scale. Flame and gas-phase
CVD models are applications where uni-directional coupling
has been practiced. The second class encompasses prob-
lems where strong coupling between scales exists, so infor-
mation flow should be bi-directional. Most homogeneous–
heterogeneous reactors fall in this latter class, which is also
the focus of this paper. As we discuss later, this flow of
information imposes challenges, as robust and efficient nu-
merical algorithms for their solution are still at embryonic
stages.

Currently there is explosive growth in multiscale mod-
eling, especially in the area of materials[12–21]. Here we
focus on catalytic reactors and discuss ideas mainly from
our own work. Specifically, we develop and apply ideas to
an important class of reactions, namely oxidation chemistry
on noble metals. Major applications entail partial oxidation
(e.g. natural gas to syngas), catalytic combustion (e.g. nat-
ural gas burning in gas turbines) for energy generation, and
end of the pipe treatment of pollutants/waste (e.g. automo-
tive catalytic converter)[22–24].

While these chemistries and reactors exhibit challenging
multiscale aspects, they are at the same time some of the
simplest catalytic reactors with coupling between all scales.
One reason for such simplicity is that oxidation chemistry is
fast and often requires low surface area to avoid deep oxida-
tion to complete combustion products. Thus, supported cat-
alysts may not be necessary. Commercial examples include
the NH3 oxidation (Ostwald process) and the HCN forma-
tion (Andrussow process) over gauzes[24]. Partial oxidation
of CH4 to syngas over gauzes and low surface area mono-
liths is another example[25]. Furthermore, in some of these
reactors (e.g. monoliths), flows are laminar. These aspects
eliminate internal mass transfer modeling and simplify ex-
ternal mass transfer simulations. As a result, these systems
exhibit an analogy to high pressure modeling of CVD reac-
tors for growth of films, when the continuum approximation
is still valid. Figs. 1 and 2depict typical length and time
scales, respectively, in such a relatively simple chemical re-
actor for the oxidation of CO on platinum.

The overall hierarchical multiscale approach we discuss
in this paper is depicted inFig. 3. The specific organization
of this paper is as follows. First, we discuss chemistry ad-
vances and limitations and provide examples from CO and
CH4 reactions on platinum. Next, we discuss the surface sim-
ulator, i.e. modeling techniques of surface processes. Some
emphasis is placed on surface diffusion that is particularly
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Fig. 1. Length scales involved in the oxidation of CO on a platinum(1 0 0) surface embedded in a CSTR at atmospheric pressure (a); snapshot from
a MC simulation, illustrating the distribution of adsorbates (b); schematic of atomic species (O∗) adsorbed on hollow sites and the molecular species
(CO∗) adsorbed on on-top sites (c); schematic of interactions in the BOC framework which are described using a Morse potential (d).

challenging to capture with molecular models. Coupling of
quantum and molecular as well as molecular and continuum
scales is illustrated. Optimization of parameters of molecular
and multiscale models is also discussed. Finally, extension

Fig. 2. Time scales of selected steps from the oxidation of CO on platinum
vs. inverse temperature. CO adsorption is non-activated but depends on
pressure. Typical gas-phase transport time scales are indicated for short
contact time reactors. The surface diffusion of CO can be orders of
magnitude faster than the other processes. The value of diffusivity was
taken from[75], whereas the rest of the time scales were computed using
columns 8 and 9 ofTable 1, on a clean surface (zero-coverage limit).

of molecular scale models to mesoscales is briefly touched
upon.

2. Advances and limitations of chemistry

Due to the advance of ab initio methods and computa-
tional power as well as advanced experimental techniques,
gas-phase chemistry is considerably more mature than so-
lution and surface chemistries. Detailed gas-phase reaction
mechanisms are therefore commonly used in flames, atmo-
spheric chemistry, and CVD modeling. Next we discuss each
type of chemistry, focusing mainly on oxidation chemistry.

2.1. Gas-phase reactions

Gas-phase oxidation reactions are a prototype example of
radical based chemistry. They typically exhibit higher ac-
tivation energies than their counterparts on noble metals,
and thus, they can be left out in relatively low tempera-
ture processes modeling (e.g. catalytic converter). However,
in both catalytic combustion and partial oxidation, pressure
and temperatures are high, so gas-phase reactions should be
included. Their onset is either desirable (e.g. in gas turbines
and some partial oxidation processes[26]) or not (e.g. due
to explosions and degradation of selectivities of some partial
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Fig. 3. Overall multiscale approach discussed in this paper. The multiscale
model includes a surface simulator coupled with a gas-phase simulator
and the corresponding reaction mechanisms as input. A mesoscopic model
can replace molecular models in order to simulate larger time and length
scales of the surface. Design and control of homogeneous–heterogeneous
reactors with molecular resolution are ultimate goals of such models.

Table 1
Reaction mechanism for the CO oxidation on platinum and selected kinetic parameters from the literature

Reaction [75] a [140] b [45] c [80] d

Pre-factor Ea Pre-factor Ea Pre-factor Ea Pre-factor Ea

O2 + 2∗ → 2O∗ 0.06 0.0 0.003 0.0 0.1 0.0 0.09 0.0
2O∗ → O2 + 2∗ – – 5 × 1012 217.7 1× 1013 213.5 1× 1013 213.5
CO + ∗ → CO∗ 0.84 0.0 0.84 0.0 0.89 0.0 0.89 0.0
CO∗ → CO + ∗ 1.25 × 1015 146.1 1× 1013 125.6 9.4× 1016 184.2 5.82× 1017 184.2
CO∗ + O∗ → CO2 + 2∗ 1.645× 1014 100.9 1× 1015 100.5 – – 4.9× 1009 46.0
CO2

∗ + ∗ → CO∗ + O∗ – – – – 1× 1011 79.5 – –
CO∗ + O∗ → CO2

∗ + ∗ – – – – 4.9× 1009 46.0 – –
CO2 + ∗ → CO2

∗ – – – – 1.0 0.0 – –
CO2

∗ → CO2 + ∗ – – – – 1× 1011 71.2 – –
O + ∗ → O∗ – – – – 1.0 0.0 – –
O∗ → O + ∗ – – – – 1× 1013 387.7 – –
C∗ + O∗ → CO∗ + ∗ – – 5 × 1013 62.8 – – – –
CO∗ + ∗ → C∗ + O∗ – – 1 × 1011 184.2 – – – –

The desorption of CO, which is, in general, a key step for predicting experimental results shows large deviations between mechanisms. The pre-factors
correspond to sticking coefficients for adsorption steps or pre-exponentials in s−1. Activation energies are in kJ/mol. The symbol “–” indicates that this
step was not included in the reaction mechanism.

a Kinetic parameters for CO oxidation on Pt(1 1 1).
b Kinetic parameters extracted from a methane reaction set fitted to selectivity data of short contact time microreactors.
c Kinetic parameters optimized against ignition temperatures at high pressures and reaction rate data under vacuum conditions using a continuum,

MF based model.
d Kinetic parameters optimized with respect to reaction rates on a Pt(1 0 0) surface under vacuum conditions using a MC simulator (see text).

oxidation processes). While power law rate expressions are
occasionally used, the development of CHEMKIN suit of
tools [27–29] has catalyzed the widespread use of detailed
reaction mechanisms.

For gas-phase chemistry, we usually employ a version
from the Gas Research Institute (GRI) mechanisms avail-
able on the web[30]. This mechanism is heavily opti-
mized against a variety of experimental data, reactors, and
molecules encountered in natural gas combustion. The most
recent version includes 325 reactions among 53 species.

2.2. Surface chemistry

In contrast to gas-phase chemistry, surface chemistry has
been less well-developed and has followed the schematic
shown below. One-step chemistry is often employed, where
the reaction rate is fitted to experimental data. In other cases,
this rate expression is based on Langmuir–Hinshelwood
kinetics and derived using reduction ideas based on a RDS.
Finally, detailed reaction mechanisms for small molecules,
such as CO oxidation and NH3 synthesis, are common
as well. An example is given inTable 1 for the CO oxi-
dation on platinum. Microkinetic analysis emphasized by
Dumesic and co-workers[31], where no assumptions about
a RDS are employed, has been a significant step toward
detailed modeling, but it has slowly been integrated in
teaching and research over the last decade. For all prac-
tical purposes, surface chemistry has been modeled using
the mean field (MF) approximation, where it is assumed
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that adsorbates are homogeneously distributed on the
catalyst surface.

Surface chemistry of small molecules has been imple-
mented manually. However, computational tools have been
developed for automatic generation of reaction mechanisms
for both gas and surface reactions[32–38]. Independent of
the technique used for reaction mechanism generation, esti-
mation of kinetic parameters still remains a challenge.

2.3. Surface chemistry parameter estimation

Parameters of elementary steps are often borrowed from
surface science experiments whenever available, and the
missing (a few) parameters are fitted to a single set of ex-
periments. Parameters for CO oxidation on platinum, from
different literature sources, are given inTable 1. Note that
the parameters can differ substantially, especially those in
the CO desorption step. As a result, these mechanisms are
often inadequate to be predictive over a wide range of con-
ditions or to describe different type of experiments. In ad-
dition, for larger molecules, parameters of elementary steps
are unknown. This situation is further complicated by the
long-standing problem of materials and pressure gaps, which
have often limited the integration of experiments under ul-
tra high vacuum on single crystals to practical catalysts and
catalytic reactor conditions. Thermodynamic inconsistencies
are possible too (for a more detailed discussion see[39]).

As an example,Table 2 shows predictions of the
ignition-extinction for CH4/O2 mixtures simulated in a stag-
nation flow reactor, where the flow impinges on a platinum
foil for given strain rate indicating an inverse residence time
[40] using three literature reaction mechanisms containing
of the order of twenty reactions. Two of the mechanisms
[41,42] predict ignition temperatures in close agreement to
experimental data as they have been tuned for this purpose.
However, their predictions for the depicted extinction tem-
perature and the selectivity to syngas (not shown) are poor
compared to experimental data. The third mechanism[43]

Table 2
Comparison of ignition and extinction temperatures predicted using three literature surface reaction mechanisms vs. experimental data in a stagnation
flow reactor for 10% methane in air, a strain rate of 10 s−1, a heat loss of 4.187 J/m2 K s, and a surface emissivity of 0.15

Ignition
temperature (K)

Power applied at
ignition (J/m2 s)

Extinction
temperature (K)

Power applied at
extinction (J/m2 s)

Experimental 845 – 1000 –
[41] 832 11305 805 −12980
[141] 790 12561 605 −19679
[43] 491 2512 992 −17167

The power supply to the surface is also indicated at ignition and extinction. None of the proposed mechanisms is able to predict accurately both ignition
and extinction temperatures. Significant variation in power supply is also observed.

predicts reasonable selectivities (not shown) but a prema-
ture ignition at very low temperature and with almost no

pre-heating. All three mechanisms assume either explicitly
or implicitly that dissociation of methane to carbon follows a
pyrolytic path, where the first-step is the RDS, and therefore
one can lump the chemistry into a single-step, CH4 → C+
4H. Additional examples of reaction mechanism limitations
for H2 and CO oxidation are given in[39,44,45].

There have been a few systematic approaches for param-
eter estimation when large molecules and reaction networks
are modeled. Some are empirical in nature. The Polanyi
free energy relationship is a common approach for acti-
vation energy estimation from the heat of reaction, with
pre-exponentials of homologous series fitted to experimen-
tal data[36,46]. The single event approach of Froment has
also proved useful[47,48].

At the other end of the spectrum, fundamental quantum
chemical computational methods are employed, with DFT
being the most popular one for surface processes[49–51].
DFT can be directly used to compute activation energies.
However, its computational cost currently prohibits its appli-
cation to large reaction mechanisms and its on-the-fly use.
Therefore, DFT has been mainly used to provide insight
into reaction paths. Note that it is easier to compute binding
energies than activation energies of surface reactions using
DFT. This is an important issue in coupling DFT calcula-
tions with semi-empirical techniques discussed next.

The lack of thermodynamic data bases for computing
heats of reactions (needed in the Polanyi relationship) and
equilibrium constants, and the high concentration of adsor-
bates at high pressures and/or lower temperatures demands
an understanding of the role of adsorbate–adsorbate interac-
tions (both direct and catalyst mediated) in the parameters
of surface reactions. Coverage dependent activation ener-
gies of desorption are common, but this is not the case
for surface reaction steps. We believe that in many in-
stances large discrepancies in reported activation energies
are due to different adsorbate concentrations on the surface
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Fig. 4. Energy diagrams for methane decomposition on platinum through the pyrolytic path (a); an oxygen-assisted path (at the zero-coverage limit)
corresponding to one CH4 molecule reacting with an O2 molecule (b); and an oxygen-assisted path on an oxygen-rich surface (θO∗ → 1) (c) as predicted
using the BOC formalism[54]. The different energy levels indicate that the presence of oxygen promotes methane dissociation. Adsorbate–adsorbate
interactions strongly modify the potential energy surface. MF theory is used to account for the coverage dependence of energetics.
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encountered in different experiments (see examples and
discussion in[39]). Furthermore, the opportunity to im-
prove accuracy of empirical methods using quantum
chemical simulations, for at least small and medium size
molecules, stimulates the use of suitable semi-empirical
techniques. One such technique is the bond order conser-
vation (BOC) or unity bond index–quadratic exponential
potential (UBI–QEP).

BOC method was developed by Shustorovich and
co-workers[52,53] and applied to derive heats of reactions
and activation energies of reaction pathways for a wide va-
riety of reaction systems,[53]. Despite its semi-empirical
nature, good agreement (often within 2–4 kcal/mol) with
experiments is obtained. However, its use in performing
quantitative reactor model calculations has not been at-
tempted till recently[39]. Next, we discuss activation en-
ergy estimation using the BOC, and the coupling between
BOC to MC and quantum (DFT) simulations will follow in
the next section.

2.3.1. Prediction of activation energies using BOC
A major advantage of the BOC method is the use of ana-

lytical expressions to estimate activation energies of differ-
ent types of reactions using only heats of chemisorption and
gas-phase dissociation energies as input. These expressions
are obtained through an energy minimization of the interac-
tion of a two-center metal-adsorbate entity described by a
Morse potential. The entire framework relies on the funda-
mental assumption of conservation and pairwise-additivity
of bond-order describing all interacting two-center bonds.

As an example, to compute the zero-coverage forward
and backward activation energies of the surface reaction
CH3

∗+∗ → CH2
∗ + H∗, the following semi-empirical, an-

alytical formulae are used

�Hrxn = DgCH2−H + QCH3 − QCH2 − QH (1)

Ef = 1

2

(
�Hrxn + QCH2QH

QCH2 + QH

)
(2)

Eb = Ef − �Hrxn (3)

whereQi is the heat of chemisorption of speciesi,DgCH2−H
the gas-phase dissociation energy,�Hrxn the heat of re-
action, Ef the forward activation energy, andEb is the
backward activation energy. We obtainEf = 107.8 kJ/mol
andEb = 25.9 kJ/mol at zero-coverage withDgCH2−H =
259.6 kJ/mol,QCH3 = 159.1 kJ/mol,QCH2 = 284.7 kJ/mol,
andQH = 252.1 kJ/mol.

The binding energies, used as an input to the BOC
framework, can be obtained experimentally (e.g. using
microcalorimetry, adsorption isotherms, or temperature pro-
grammed desorption), estimated theoretically, or derived
from DFT calculations. Lateral interactions can be also
taken into account[52,53], and thus, coverage-dependent ac-
tivation energies can be obtained from coverage-dependent
heats of chemisorption. Since reaction mechanisms of mod-
erate size or large molecules typically consist of many more

steps than species, calculation of binding energies with DFT
is a much easier and computational tractable task. To illus-
trate this point, we refer to a newly developed C1 surface
reaction mechanism for methane oxidation on platinum that
consists of 62 irreversible reactions but only 10 species[54].

As an example,Fig. 4depicts illustrative energy diagrams
for methane decomposition on platinum. The pyrolytic de-
composition path exhibits the highest activation energies in
intermediate steps, contradicting the literature hypothesis
of single-step decomposition. Oxygen-assisted paths, either
through O or OH, exhibit lower activation energies, espe-
cially on an oxygen-covered surface. Based on energetics
alone, one can conclude that oxygen assists methane disso-
ciation. Transient experiments in our lab have indeed qual-
itatively confirmed this prediction[25]. However, caution
should be exercised in inferring the RDS based solely on en-
ergetics. For example, reactor scale simulations for methane
oxidation indicate that the preferred path changes with op-
erating conditions of temperature, composition, etc.[54].

2.3.2. Values of pre-factors: sticking coefficients and
pre-exponentials

First principles computation of kinetic pre-factors is pos-
sible either through MD[53] for low activation energy (fast)
processes or TST for high activation energy (slow) pro-
cesses. However, these approaches can be quite computa-
tionally involved. Furthermore, there are uncertainties in
microscopic rate constants associated with errors in activa-
tion energies, the presence of defects, catalyst aging, and
adsorbate–adsorbate interactions, which cannot be easily or
accurately accounted for. While this is an area where more
research will be valuable, in the interim we propose to simply
obtain order of magnitude of sticking coefficients, from sur-
face science experiments of major species, whenever avail-
able, and TST estimates of pre-exponentials based on the
type of reaction[31]. This procedure provides a screening
mechanism for semi-quantitative comparison to experimen-
tal data. Subsequently, refinement of important pre-factors
can be carried out through a multistep optimization proce-
dure discussed later. This mechanism can be used to pro-
pose experiments for further validation and investigate the
effect of previously unexplored reaction paths on reaction
rates and concentrations.

3. Surface simulator

The surface mechanism and the corresponding kinetic
parameters represent the major input to a surface simu-
lator. Such input entails knowledge about the elementary,
microscopic steps (reaction and diffusion paths), the corre-
sponding pre-factors, namely pre-exponentials and sticking
coefficients, and the activation energies.

The conventional approach in modeling catalytic reactors
entails continuum equations of change for surface processes.
Under the MF assumption, ordinary differential equations
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suffice to study dynamics and algebraic equations are ade-
quate for steady state situations. In order to study pattern
formation on catalytic surfaces, the MF assumption is re-
laxed, and continuum diffusion-reaction (partial differential)
equations are employed[55].

The inability of MF models to accurately treat spatial
effects at the molecular level and phenomena such as nu-
cleation and coalescence of clusters of adsorbates, uphill
surface diffusion, etc. has led to the development of an hier-
archy of alternative surface simulators. Some examples in-
clude the Bragg–Williams approximation, the Bethe–Peierls
and the modified Bethe approximations, the Kukuchi cluster
approximation, and the quasi-chemical approximation listed
in [56]. At the top of the hierarchy lay MC simulations
[57–59], which have been by far the most popular surface
simulators over the last 15 years and are discussed next.

3.1. Monte Carlo simulations

MC simulations were introduced by Wicke et al.[60] and
a few years later by Ziff et al.[61] who studied CO oxidation
on platinum. Ziff’s work and subsequent studies focused
primarily on phase transitions and critical exponents of this
new, exciting class of non-equilibrium statistical mechan-
ical systems. A burst in activity on more complex kinetic
systems and investigation of the role of various features
such as desorption, Fickian surface diffusion, defects, and
adsorbate–adsorbate interactions in phase transitions ap-
peared after Ziff’s work[62]. In parallel, significant devel-
opments in algorithms have been also achieved, including
the implementation of real time[62–69], the elimination of
null events[67–69], the implementation of generic codes
for treating complex surface reaction mechanisms, etc. For
a review of MC algorithms and their application to differ-
ent physical systems, see[62,70–76]. The work presented
here uses an efficient continuous time MC method with
lists of neighbors and local update discussed in detail in
[69]. Recently, there is more emphasis on implementing
realistic kinetic parameters in MC simulations enabling
comparison of macroscopic features (e.g. reaction rates)
with experimental data[77–80].

In MC simulations of surface reactions, one typically
maps catalyst sites on a lattice on which adsorbates reside.
Such an approach belongs to the general class of interacting
particle system (IPS), which describe cooperative phenom-
ena, with Ising models being a well-known example from
magnetism. A snapshot of a MC simulation on a square
lattice representing the Pt(1 0 0) surface is shown inFig. 1b.
MC simulations provide the exact, stochastic solution to
the time-dependent master equation describing the surface
processes
dpα

dt
=

∑
β

[
Wαβpβ − Wβαpα

]
(4)

wherepα is the probability of the surface being in configu-
rationα andWαβ the transition probability per unit time of

the surface going from configurationβ to α. As a discrete
technique, it takes into account local effects in the various
probabilities, such as the presence of point or small clusters
of defects, short-range adsorbate–adsorbate interactions, the
necessity for proximity (adjacency) of sites for dissociative
adsorption and bimolecular reactions, and so on. These
small length scale inhomogeneities, depicted inFig. 1b,
are features typically not treated accurately by MF models.

With this input (discussed in the chemistry section), tran-
sition probabilities can be computed for a large class of
cases in[69], in a straightforward manner in order to deter-
mine the spatio-temporal evolution of the catalytic surface,
i.e. a MC simulation should be thought of as a sophisti-
cated solver of surface kinetics with atomic spatial resolution
but extreme computational cost. However, the fundamental
physics and chemistry of the problem are incorporated in
the microscopic events modeled and their associated tran-
sition probabilities. Identification of important events/paths
can be achieved through MD and/or experiments. From the
resulting distribution of the adsorbed species on the catalytic
surface, spatial and temporal average (homogenized) prop-
erties can be derived, such as coverages and reaction rates,
which are of practical interest.

3.2. Surface diffusion

Several experimental techniques, such as field emis-
sion microscopy (FEM), field ion microscopy (FIM),
laser-induced thermal desorption (LITD), and scanning tun-
neling microscopy (STM)[81,82] are used to study surface
diffusion (diffusion coefficients, atom clustering, kinetics,
etc.). From these studies, it can be inferred that realistic
surface diffusion cannot be practically run with MC or
multiscale simulations as its corresponding transition prob-
ability is usually several orders of magnitude higher than
those of the rest microprocesses (seeFig. 2for an example).
Consequently, MC simulations are typically considered as
the zero (or very slow) diffusion limit and MF calculations
as the infinite Fickian diffusion limit. Obviously, this sit-
uation limits the possibility of comparing molecular and
multiscale simulators to experimental data for conditions
where surface diffusion is important.

In order to study the effect of surface diffusion on sur-
face kinetics, several approximate techniques have been pro-
posed. For example, in[83–85] the catalytic surface was
equilibrated by allowing a certain number of surface diffu-
sion events between each successful microprocess for dif-
ferent microscopic diffusion dynamics. Similar ideas were
explored in the CO oxidation on Pd(1 0 0)[86] and in a
study on the effect of surface diffusion on TPD data[84],
where quasi-equilibrium was observed at sufficiently fast
diffusion rates. A hybrid approach has also been imple-
mented, where the immobile adsorbate was described using
a MC technique, and the mobile species was solved using
a MF approximation[86,87]. In this technique, a uniform
distribution of the mobile species on the remaining vacant
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sites was assumed[87] that can be corrected to include
adsorbate–adsorbate interactions through the Bethe–Peierls
approximation[86]. Note that in many studies on diffusion,
the Metropolis algorithm was employed, where the energy
for hopping is simply taken as the difference in binding en-
ergy between the departing site and the target site[88], de-
spite the fact that this algorithm does not necessarily capture
the correct physics (dynamics) of migration.

Here, similar to some of the aforementioned studies, we
propose that in the absence of spatial patterns of relatively
large length scale (e.g. several microns), it is possible to
obtain the actual reaction rate from MC simulations. To
achieve this, surface diffusion is progressively increased
until a plateau in the surface reaction rate is reached, in-
dicating that faster diffusion does not further change the
overall reaction rate. This asymptotic limit is typically
reached when the surface diffusion rate is about three to
four orders of magnitude faster than those of the rest pro-
cesses, a computationally completely feasible situation and

Fig. 5. Reaction rate on a Pt(1 0 0) surface obtained from MC simulations at UHV conditions, as the CO Fickian surface diffusion is gradually increased
at partial pressures ofPO2 = 2.66 nbar andPCO = 0.4 nbar for a surface temperature of 475 K (a). No lateral CO∗–CO∗ interactions were included in
any step. For sufficiently fast diffusion, a plateau in the reaction rate is reached. Error bars indicate statistics. Snapshots of the catalytic surface for three
different conditions: no surface diffusion (b);DCO = 9.4 × 10−12 m2/s (c); DCO = 1.9 × 10−9 m2/s (d). The fast surface diffusion simulated does not
lead to complete homogenization of the surface. No surface reconstruction was considered.

consistent with scaling analysis of continuum equations of
change. Furthermore, various surface diffusion mechanisms
can be explored (e.g. Fickian, non-Fickian, first nearest
or further nearest neighbor jumps, Arrhenius dynamics,
parabolic jump dynamics, etc.)[81,89].

Fig. 5agives an example of the asymptotic behavior ob-
served, as the surface diffusion increases, for the case of
Fickian CO surface diffusion in the oxidation of CO on plat-
inum. The reaction rates are in kg/m2 s. The indicated error
bars show that as surface diffusion increases, the statistical
accuracy diminishes due to the enhanced sampling of surface
diffusion compared to the rest processes. It is noted that the
fastest diffusion coefficient used in these MC simulations
is still several orders of magnitude slower than the actual
diffusion coefficient reported in the literature (compare to
Fig. 2). The asymptotic value is in good agreement with the
MF model for these conditions, which holds for spatially
homogeneous adlayers. Snapshots of the adsorbed layer de-
picted also inFig. 5 indicate that despite the agreement in
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rate with the MF model, for the fastest diffusion considered
here, small islands of CO are still noticeable (lack of com-
plete homogenization).

Since MC simulations with surface diffusion are compu-
tationally very demanding, it is useful to know a priori the
regimes where surface diffusion is RDS and should not be
neglected. To achieve this, two techniques can be employed,
namely sensitivity analysis (SA) and PE analysis. SA is a
more general but computationally demanding method. In the
brute force SA, one increases (e.g. doubles) the rate of sur-
face diffusion and performs a new MC simulation. Surface
diffusion is important only when the reaction rate changes.
Fig. 5acan be thought of as an example of brute force SA
for surface diffusion (more precisely, this a parametric con-
tinuation). On the other hand, PE requires no additional MC
simulations as it provides information about whether an ad-
sorbed species is in PE and as a result, its surface diffusion
is unimportant. This can be done fairly easily by compar-
ing the rates of adsorption, desorption, and reaction of each
species as detailed in[90].

The good agreement between MF and MC simulations
for moderately fast diffusion raises the question of the need
of complex MC surface simulators. Currently, we can-
not answer this question comprehensively. By conducting
MC under vacuum conditions and multiscale simulations
at high pressures, we have found that the agreement be-
tween MF and MC simulators holds under many conditions
when CO surface diffusion is included. An interesting
finding is that the coupling with the gas-phase offers an
additional route for homogenization of adsorbates through
a desorption–re-adsorption mechanism, and thus, overall
the differences between continuum and hybrid simula-
tions are smaller at higher pressures for coupled reactors,
even in the absence of surface diffusion. However, devi-
ations have also been found near extinction in both the
reaction rates and extinction temperatures. We have at-
tributed this to the fact that surface diffusion of adsorbed
O is not considered in MC simulations (since it is too
slow) and prior to extinction the non-random distribution
of the O adatoms on the surface creates spatial inhomo-
geneities resulting in differences between the two models
[90]. Moreover, when lateral interactions between the CO
species are considered, CO diffusion depends on the lo-
cal distribution of adatoms on the surface (non-Fickian
surface diffusion), and non-MF behavior can be found.
We will return to this issue in the mesoscopic modeling
section.

An important observation is that principles from concep-
tual process design of chemical processes can be applied
to hierarchical multiscale models. In particular, low-level
MF, continuum reactor scale simulations can be used as a
fast guide in model predictions, sensitivity and PE analy-
ses, and experiment selection for parameter optimization of
high level molecular and multiscale models. This input from
low-level models into high-level models minimizes the over-
all computational cost.

3.3. Quantum-molecular coupling

In the idealized case of no adsorbate–adsorbate inter-
actions (both direct and surface mediated), the coupling
between quantum and molecular scales is uni-directional.
Therefore, one uses DFT or BOC, in conjunction with TST,
to store the rate constants in Arrhenius form. This situa-
tion parallels gas-phase reactions and reactor scale simula-
tors mentioned in the introduction. Practically, this occurs
at the zero-coverage limit (sufficiently low pressures and/or
high temperatures). An example of this approach has been
recently used[91]. However, the rate of surface processes
can be strongly influenced by adsorbate–adsorbate interac-
tions, since the potential energy landscape can be altered by
nearby, co-adsorbed species. This is well-known for desorp-
tion steps through TPD and microcalorimetry experiments,
and has been included in MC simulations, by varying the
activation energy of desorption of a species typically as a
linear function of the number of its first nearest neighbors.
Using BOC, Shustorovich has advocated similar effects for
surface reactions, which we illustrate inFig. 4 for selected
oxygen-assisted paths of methane decomposition and for hy-
drogen oxidation on platinum in[39]. This situation alludes
to many body effects in reaction events. Knowledge about
the specific distribution of species (microconfigurations) on
the catalytic surface is then required to compute energetics.
This information is provided from MC simulations, but due
to its many body nature, it fluctuates in both time and space.
In turn, the activation energies are needed to compute tran-
sition probabilities for updating the distribution of species
in MC simulations. As a result, the coupling between quan-
tum and molecular scales is bi-directional, an issue that has
been downplayed till recently.

For small reaction systems, DFT calculations can be di-
rectly coupled with MC simulations. We propose that this
can be done by creating a priori a kinetic database (lookup
table) by DFT for a small number of different surface micro-
configurations, that is then incorporated into the MC sim-
ulations. If the number of possible configurations is large,
BOC can be first used in MC (as discussed next), and by
sampling the most important microconfigurations during a
MC simulation, the lookup table can be then created off-line
by DFT and incorporated into the MC simulator for future
calculations. This idea of a lower-level model assisting a
higher-level model parallels again hierarchical process de-
sign concepts mentioned earlier.

For more complex reaction mechanisms, DFT is too in-
tensive to currently use even for non-interacting cases. The
BOC method presents a feasible alternative to compute the
activation energies of all elementary steps within a few
kcal/mol. For these systems, the number of local microcon-
figurations can become very large when all interaction ef-
fects are taken into account (different adsorbing sites, direct
and indirect interactions, many co-adsorbed species, etc.).
When a null event MC algorithm is used, we propose the
corresponding activation energies can be computed on the
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fly using BOC expressions after a microconfiguration has
been selected. On the other hand, when a class or list based
algorithm is used, the transition probabilities of all micro-
configurations encountered on the surface at that instant are
needed. This can result in a large number of possible mi-
croconfigurations and a huge database (lookup tables) using
the BOC expressions. For this reason, a simplification using
single type of sites and taking the heats of chemisorption
as functions of the local (discrete) coverage can be pursued
[92].

Finally, a hybrid of DFT and BOC is feasible as well.
Here the zero-coverage heats of chemisorption are computed
by DFT, and adsorbate–adsorbate interactions are modeled
through BOC. By taking into account different types of bind-
ing sites through analytic formulae, ‘first principles MC’
simulations can be carried out[78,93] (terminology after
Neurock and co-workers).

Diffusion in zeolites is an example where a hierarchy of
quantum and molecular models has been recently employed
[74,89,94]. Trout and co-workers applied electronic structure
methods to calculate thermodynamic parameters for possi-
ble elementary reactions in the decomposition of NOx over
Cu-ZSM-5[95]. Based on these insights, they developed a
KMC model of reaction and diffusion in this system, seeking
the optimal distribution of isolated reactive Cu centers[96].
This hierarchical approach to realistic modeling of complex
systems presents an attractive avenue for future research.

Of all the dynamics studies performed on zeolites, very
few have explored the potentially quantum mechanical na-
ture of nuclear motion in nanopores[97–100]. Quantum
modeling of proton transfer in zeolites[98,100,101]is rel-
evant in catalytic applications. Such modeling will become
more prevalent in the near future, partially because of recent
improvements in quantum dynamics approaches[100], but
mostly because of novel electronic structure methods devel-
oped by Sauer et al.[102,103], which can accurately com-
pute transition state parameters for proton transfer in zeolites
by embedding a quantum cluster in a corresponding classical
forcefield. To facilitate calculating quantum rates for pro-
ton transfer in zeolites, Fermann and Auerbach developed a
novel semi-classical TST (SC–TST) for truncated parabolic
barriers[100], based on the formulation of Hernandez and
Miller [104].

The coupling between quantum calculations, BOC, and
MC simulations has been nicely illustrated in the decompo-
sition of NO on Rh(1 0 0)[77,78], ethylene hydrogenation
on Pt [77,78,105], and the desorption of O from Rh(1 0 0)
[106,107]. The zero-coverage binding energies were com-
puted using DFT calculations and found in very good agree-
ment with experimental data. Due to the large number of
DFT computations involved, BOC was used to include the
effect of lateral interactions knowing the species distribu-
tion on different active sites (on-top, bridge, and hollow) of
the catalytic surface from the MC simulation. Furthermore,
a scaling (correction) factor was used to match BOC esti-
mates with DFT calculations. Lateral interactions between

Fig. 6. Distribution of activation energies derived from BOC with single
type of site (see text) for the CO surface oxidation reaction on Pt at
three temperatures indicated, forPO2 = 2.66 nbar andPCO = 0.4 nbar.
Changes in the population of reaction activation energies is observed,
with a broader distribution near ignition at∼350 K.

molecules in the ethylene hydrogenation system were treated
as an explicit function derived from extended Huckel theory.
Coupling BOC with MC simulations has been also illustrated
in a study of the effect of adsorbate interactions in the TPD
spectra for CO desorption on Pd(1 0 0)[79] and Ni(1 0 0)
[108], and H2 desorption on Mo(1 0 0) and Ni(1 1 1)[79].
This analysis was extended to include interactions between
co-adsorbates using corrected BOC expressions for TPD
spectra of CO and H2 co-adsorbed on Ni(1 0 0) and Rh(1 0 0)
[93]. A null event type MC algorithm has been used, and
the corrected activation energies were computed on the fly.
Good agreement was found with the experimental spectra.

Fig. 6 shows the distribution of activation energies of
surface reaction in the catalytic oxidation of CO at three
surface temperatures indicated, forPO2 = 2.66 nbar and
PCO = 0.4 nbar. The two low temperatures correspond to
situations prior to ignition, whereas the higher temperature
corresponds to an ignited catalyst. First-nearest neighbors
adsorbate–adsorbate interactions are taken into account
through the BOC formalism with a single type of sites
in the MC simulator (see methods above and see[39] for
continuum models). The heats of chemisorption are taken
to depend linearly on the local coverage. Sixteen differ-
ent activation energies are computed for the corresponding
microconfigurations. The distribution of the most probable
microconfigurations shifts to higher activation energies with
increasing surface temperature. Indeed, the dominant con-
figuration at 300 K on the extinguished branch corresponds
to high local coverage of CO∗ and low local coverage of
O∗. Near ignition, a broader distribution of microconfigu-
rations is observed as the coverage of O∗ increases. Under
these conditions, the surface is only partially covered with
O∗ species explaining the high activation energy of iso-
lated configurations. Despite the significant variation of the
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population of activation energies of surface reaction with
varying conditions, there is little influence of such effects on
reaction rate for these ‘fast’ reactions. This surprising result
is because the RDS is often adsorption and/or desorption of
reactants. It appears then that the surface is ‘forgiving’ and
allows for simple models from the hierarchy. However, for
slower reactions this may not be the case.

4. Reactor scale simulator

The input to the gas-phase simulator includes the gas-
phase chemistry, constitutive equations for transport, ther-
modynamic and transport parameters, an equation of state,
and adsorption–desorption rates from the surface simula-
tor. These surface-related rates are encountered either in the
conservation equations, for lumped systems (e.g. a catalytic
CSTR, a PFR with catalyst at the wall (film reactor) and per-
fect mixing in the radial direction), or the boundary condi-
tions of distributed systems (e.g. a stagnation flow reactor).
As a result, coupling is bi-directional. The surface simulator
provides these rates.

Following [109], the equations of change have been well
established. With the development of advanced computa-
tional fluid dynamics (CFD) software, such as Fluent and
CFX, modeling of laminar flows has advanced considerably
in recent years, and we will not attempt to cover this topic
here. It is worth though mentioning that the integration of
complex reaction mechanisms with fluid flow is still limited
mainly to one-dimensional reacting (e.g. stagnation) flows
[42,110]. Two-dimensional reacting flow simulations with
complex chemistry are becoming more common but are
still non-trivial in computational resources and numerical

Fig. 7. Stream functions from a non-isothermal flow (air) simulation in a stagnation reactor enclosed in a glass tube. The catalyst is 1 mm thick× 20 mm
wide and is maintained at 1000 K, whereas the rest of the boundaries are at 300 K. The inlet flow velocity is 0.5 m/s and the tube opening is 0.04 m
wide. For certain conditions, flow recirculations occur explaining higher reactivity at the back of platinum foils seen in our lab. Chemical isolation of
the back of the surface and proper description of transport are necessary for extraction of kinetics from this reactor.

challenges[111–115]. An exception to this rule has been the
CVD modeling, where the decoupling of mass transfer from
fluid and heat transfer has enabled one over the last decade
to carry complex chemistry simulations. Despite significant
progress in reacting flows, mixture average diffusivities and
neglect of Dufour effect are not uncommon. Turbulent re-
acting flows with complex chemistry are still at embryonic
stages, with initial attempts in turbulent combustion using
moderate size reaction mechanisms[116].

An example of a two-dimensional, non-isothermal fluid
flow simulation is depicted inFig. 7. This simulation indi-
cates that the stagnation flow reactor used previously to ex-
tract kinetics can give rise to significant recirculations and
contributions from the backside of the catalyst, indicating the
inadequacy of the one-dimensional modeling analysis of ex-
perimental data. Due to the importance of transport phenom-
ena and the potential contribution of gas-phase chemistry
in partial oxidation and catalytic combustion, consideration
to the coupling of CFD with gas and surface chemistries
should be given. It is expected that extension to two- and
three-dimensions will be materialized based on parallel, dis-
tributed computing platforms (e.g. Beowulf clusters).

4.1. Molecular-continuum coupling

To cope with the existence of multiple length and time
scales involved in homogeneous–heterogeneous reactors de-
picted inFigs. 1 and 2, multiscale integration hybrid (MIH)
algorithms are used. These algorithms are based on do-
main decomposition, where the fluid phase (macroscopic
scales) is treated with continuum conservation equations,
and the surface (mesoscopic scales) with a stochastic MC
simulator.
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Two numerical schemes are considered in solving such
multiscale systems. First, a direct numerical simulation
(DNS), which dynamically couples the gas-phase equa-
tions of change with the atomistic scale, is attempted. The
gas-phase is solved using either an explicit Euler method
(for simplicity) or the LSODA package, whereas the surface
is modeled using the efficient continuous time MC with
local update algorithm[69]. The spatially averaged surface
rates from the MC simulation are provided to the gas-phase
equations, which in turn provide the updated gaseous mole
fractions needed in MC. The first demonstration of feasi-
bility of such MIH algorithm was done several years ago
for a prototype unimolecular surface reaction in a CSTR
[63]. Subsequently, boundary value problems have been
also addressed[117,118].

The feasibility of the DNS approach for detailed surface
kinetics is illustrated for the first time inFig. 8 with the
example of catalytic CO oxidation on a platinum surface
embedded in a CSTR.Fig. 8 shows the mole fractions (a)
and the surface coverages (b) as a function of time. At very
short times, changes in the surface coverages occur while
the gas-phase is not practically changing (it serves as a
buffer in this case or species in excess). At longer times (a
small fraction of residence time), a strong coupling between
the surface coverages and the gas-phase mole fractions is
seen. Finally, at longer times (order of residence time), the
system evolves with the slow dynamics of the gas-phase
and eventually reaches steady state. DNS simulations are

Fig. 8. Gas-phase mole fractions (a) and surface coverages (b) vs. real
time for 20% CO in air in a CSTR operating at atmospheric pressure,
at a surface temperature of 1200 K, and a contact time of 10−5 s. These
simulations were conducted using the DNS algorithm, illustrating the fea-
sibility of MIH algorithms and the strong coupling between the gas-phase
and the catalytic surface. No lateral interactions were included in these
simulations.

efficient when the catalytic system exhibits fast dynamics
and strong coupling, whereas they can become computa-
tionally very demanding around turning points where slow
dynamics is observed[119].

Numerical difficulties are sometimes encountered in these
DNS MIH simulations due to the MC noise, which propa-
gates into the fluid phase. This noise can make the entire
numerical scheme unstable when rare event dynamics are
encountered, where the rates change dramatically over a sin-
gle event. Furthermore, while the time step, determined from
the MC simulator, is typically very small, this is not always
the case. For example, when an almost O∗ poisoned surface
is simulated (slow desorption), the MC time step can be-
come huge, rendering unstable the gas-phase integrator. In
this case, one can advance the gas-phase with normal time
steps till the MC time step is reached.

Following ideas proposed in[117], an iterative, split-
ting scheme can be also employed that involves iterative
convergence of both the MC simulator and the gas-phase.
Practically, the two scales are solved independently in ev-
ery iteration, and the quantities coupling both models are
computed. In particular, steady state surface rates computed
from a MC simulator are incorporated into the steady state
gas-phase conservation equations, which in turn provide the
gas-phase mole fractions needed in the MC simulator (in
the adsorption steps). This iterative scheme is computation-
ally less demanding and allows parametric studies, i.e. an
extension of natural parameter continuation algorithm from
continuum to multiscale simulations. It obviously lacks
transient information but it is convenient for steady state so-
lutions.Fig. 9 shows the changes in reaction rate when the
surface temperature is progressively increased around the

Fig. 9. Illustration of convergence of multiscale simulations using an
iterative solver. The net reaction rates of the three gaseous species vs.
iterations are depicted for increments in temperature near but prior to
ignition. Visual inspection of rates indicates that they obey overall reaction
stoichiometry. The number of iterations per temperature is much larger
than what typically needed in the simulations for figure clarity. The
parameters are the same as inFig. 8.



16 S. Raimondeau, D.G. Vlachos / Chemical Engineering Journal 90 (2002) 3–23

Fig. 10. Reaction rate vs. inverse temperature for the conditions ofFig. 8.
The MIH algorithm illustrates complex dynamic behavior, including hys-
teresis, observed in catalytic systems.

ignition temperature versus the number of iterations. Every
iteration entails the solution of gas-phase equations at steady
state along with MC integration till steady state has been
reached. For the MC simulator, automatic criteria have been
implemented to guarantee steady state and obtain spatial av-
erage, steady state rates needed in the gas-phase simulator.

Fig. 10 shows the steady state reaction rate versus the
inverse temperature, demonstrating the feasibility of such
MIH algorithms for complex surface kinetics. Furthermore,
non-linear phenomena, such as ignition and extinction, can
be captured. From our experience, at low temperatures and
near turning points, the iterative scheme is preferred because
the coupling is weak and the dynamics is very slow. How-
ever, at higher temperatures, where the coupling becomes
significant and the dynamics is fast, lack of convergence of
the iterative scheme may be encountered[90], and thus, the
DNS method is preferred.

5. Parameter optimization of molecular and
multiscale simulators

Refined kinetic parameters used in a reaction mecha-
nism are needed to accurately capture a wide variety of
experimental features, ranging from spectroscopic data to
reactor design responses. A multistep methodology was
recently proposed and successfully applied to optimize the
pre-factors of MF simulators[44,45]. We show here for the
first time that this methodology can naturally be extended to
molecular and multiscale models as well. This is illustrated
for the oxidation of CO including the steps listed inTable 1
with surface diffusion, using the MC algorithm detailed
elsewhere[69].

The first-step of the methodology is to estimate initial
kinetic parameters for all the reaction steps involved in
a screening reaction mechanism of the surface simulator

according to the discussion above. The optimization method-
ology is then applied to refine the pre-factors (sticking co-
efficients and pre-exponentials) of the different steps. Using
this screening mechanism, the important pre-factors affect-
ing the experimental features under study are determined
through SA. An important advantage of this multistep pro-
cedure is that it enables us to simultaneously analyze con-
siderably different experimental data, ranging from vacuum
to high pressure, from single crystals to practical catalysts,
and from spectroscopic data to engineering responses of
conversion, selectivity, ignition, and extinction. SA allows
us to create a mapping between key mechanistic aspects
of a large reaction mechanism and different experiments.
Consequently, suitable experiments can be proposed. As an
example, the oxygen-assisted path of methane decomposi-
tion on platinum predicted by simulations (and discussed in
Fig. 4) was qualitatively verified in transient experiments in
our lab[25]. The ultimate outcome of the approach is that
refined reaction mechanisms are reliable over a wide range
of experimental conditions.

As a simple example, in the catalytic oxidation of CO
on platinum at 500 K, the adsorption–desorption of CO and
the adsorption of O2 are important steps in controlling the
reaction rate for fuel rich mixtures. Furthermore, near the
surface stoichiometric point where the reaction rate is max-
imum, surface diffusion needs to be included in the model
optimization. SA determines then the target sets of experi-
ments and suitable operating conditions to conduct the op-
timization. Details are given in[80].

A direct optimization using a molecular or multiscale
model cannot be practically achieved because it requires a
huge number of function evaluations, i.e. molecular or mul-
tiscale simulations. To circumvent this difficulty, a solution
mapping technique is employed where the model response,
e.g. reaction rate, ignition temperature, etc. is parameterized
using low degree polynomials[120]. Simulated annealing
is finally used to get the optimized pre-factors[121] (other
choices are possible too). Finally, the parameters are val-
idated against experiments not used in the optimization
process.

Fig. 11shows an example of performance of an optimized
parameter model using our MC simulator for the reaction
rate versus the CO:O2 ratio data at 500 K. This multistep
methodology yields satisfactory results for molecular mod-
els including surface diffusion at conditions where optimiza-
tion was not performed (e.g. 400 and 600 K shown also in
the same plot). Furthermore, due to its modularity, it can be
easily applied to different types of experiments to provide
a mechanism that is accurate over a wide range of condi-
tions. It has also been shown[80], that for the same target
experiments, some of the refined parameters of the surface
mechanism derived from molecular models differ statisti-
cally from the ones derived from a continuum approach,
justifying the need for extending these optimization tools to
molecular and multiscale models. We propose that this ap-
proach could be used to fit complex force fields to quantum
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Fig. 11. Reaction rate vs. the CO:O2 ratio comparing the optimized MC
model (lines) against experimental data (symbols) of Liu et al.[139]
at three temperatures. The parameters are refined at 500 K against the
experiments carried out under ultra high vacuum conditions on a Pt(1 1 1)
surface with a fixed molar total flux of 1.65 × 1018 molecules/(m2 s).
Lateral CO∗–CO∗ interactions were considered in the CO desorption step
only.

mechanical simulations, e.g. in zeolite materials, in order
to eliminate the commonly used trial-and-error approach.

6. A mesoscopic framework for surface processes

In the presence of microscopic size inhomogeneities (of
the order of a few nanometers), such as the ones shown in
Fig. 1b, spatial averaging in a relatively large MC cell is
sufficient to provide mesoscopically average rates needed
in the fluid phase. However, experiments and continuum
diffusion-reaction simulations clearly demonstrate that large
scale patterns with characteristic wavelength of the order of
micron(s) can form as a result of competition of diffusion
and reaction processes (e.g. a Turing type instability) or mi-
crophase separation and reaction[122,123]. Local stability
analysis indicates that the existence and wavelength of these
patterns strongly depends on the actual value of species dif-
fusivities [123,124]. Therefore, such mesoscale problems
cannot be handled either by the asymptotic approach pro-
posed above or other proposed assumptions found in the
literature.

The recent introduction of mesoscopic equations for diffu-
sion, as well as additional processes (e.g. molecular adsorp-
tion, desorption, and first-order surface reaction), provides
an alternative, systematic framework to meet this challenge
[6,125–132]. These are stochastic integrodifferential equa-
tions (SPDEs) derived directly from the underlying mas-
ter equation (seeEq. (4)) solved conventionally, at small
scales though, with MC methods. Their derivation entails
coarse-graining using non-equilibrium statistical mechanics

Fig. 12. Validation of gradient continuous time MC (G-CTMC) simulations
in two-dimensions with continuum equation. (a) Steady state concentration
profiles from Fickian diffusion with first-order surface reaction for three
reaction rate constants indicated and (b) transient concentration profiles
from Fickian diffusion at dimensionless times indicated (no other processes
included). In both cases, Dirichlet boundary conditions of one and zero
are used in the direction of diffusion and periodic boundary conditions
are employed in the transverse direction. No interactions between atoms
are considered. The insets in panels a and b depict the coarse-graining
idea and simulation domain, respectively.

techniques over a relatively large area containing enough
molecules or atoms (see schematic inFig. 12) so that the lo-
cal coverage can be replaced with a continuum rather than a
discrete variable[130]. In contrast to ad hoc coarse-graining
modeling, it can be shown that the derived mesoscopic equa-
tions are exact in the limit of an infinite range potential of
interactions between species. While this appears to be re-
strictive, as interactions are short-ranged in many catalytic
reaction applications, computations indicate that they are
quantitative accurate for relatively short-range interactions
[6,130]. It turns out that this is not a coincidence but a result
of underlying properties. In particular, these equations obey
a Large Deviation Principle and approach the infinite po-
tential range behavior in an exponential fast manner as the
potential length or the coordination of the lattice increases
[131].

An important feature of mesoscopic equations is that
coarse-graining retains the information of microscopic dy-
namics of diffusion in the rescaled equation. As a result,
mesoscopic equations differ for various diffusion mecha-
nisms (e.g. Metropolis versus Arrhenius). As an example,
in the case of a unimolecular reaction

A+∗ ↔ A∗

A∗ → B+∗
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where intermolecular forces in desorption and diffusion are
important, the mesoscopic equation under isothermal condi-
tions (by leaving the noise terms out) reads

∂u

∂t
−D∇

{
e−βK∗u [∇u − βu(1 − u)∇K∗u

]}
− kaP(1 − u) + kdue−βK∗u + kru = 0 (5)

Heret is the time,u the coverage (dimensionless concentra-
tion), D = de−βU0is the diffusion coefficient,d the diffu-
sion coefficient at high (infinite) temperature,U0 the energy
associated with the binding of the catalyst,K the intermolec-
ular potential of adsorbate–adsorbate (lateral) interactions,
K∗u = ∫

K(|r−r ′|)u(r ′)dr ′is the convolution of the poten-
tial of interactionsK and concentrationu, ka, kd, andkr are
the rate constants for adsorption, desorption, and reaction,
respectively,P is the reactant partial pressure, andβ−1 = kT,
with k being the Boltzmann constant andT being the tem-
perature. In derivingEq. (5), Arrhenius migration dynamics,
i.e. the activation energy of jumping of species A depends
on its binding energy only, and equal potential of interac-
tions for desorption and migration have been assumed (see
[132] for a more general case).

In the absence of lateral interactions and when the
adsorption–desorption reaction terms are negligible,Eq. (5)
reduces to Fick’s second law of diffusion. It is interest-
ing to notice that the diffusion inEq. (5) is comprised of
the normal Fickian term (D∇2u) and a correction term
taking into account adsorbate–adsorbate interactions. In
particular, the termu(1−u) indicates the probability of
migration from one occupied site to an adjacent empty
site and the convolution term indicates the energy due
to adsorbate–adsorbate interactions. The remaining last
three terms represent the unimolecular reaction rates for
adsorption, desorption, and reaction. Note that in these
mesoscopic models, interactions enter the transport equa-
tion in a different way than in previous work[133–135].
Furthermore,Eq. (5) can also predict uphill diffusion un-
der certain conditions[130]. The diffusion inEq. (5) can
also be cast in a more traditional form as a gradient in
chemical potential[6]. The apparently complicated form of
diffusion is due to a more complex form of the free energy
functional in the presence of adsorbate–adsorbate inter-
actions.

In order to test the accuracy of mesoscopic equations,
we have recently proposed to force the system far away
from equilibrium [6], so that non-zero fluxes and rates
can be computed, and subsequently, to compare MC sim-
ulations to mesoscopic calculations for relatively short
scale systems where the former are feasible.Figs. 12 and
13 compare solutions of the mesoscopic equation to gra-
dient continuous time MC (G-CTMC) results under an
overall gradient in concentration, i.e. a situation far from
equilibrium. Physically, this situation arises in membrane
reactors and microporous catalyst particles (e.g. zeolites),
when the active sites are within the membrane or the

particle, and in tubular type of reactor, where gradients
are introduced by the gas-phase due to consumption of
reactants.

First in Fig. 12, two examples are shown where compari-
son of the continuum solution with gradient MC simulations
is carried out for non-interacting systems in two-dimensions,
as a validation means of the latter. Note that the continuum
equation is correct in this case, except of a higher order cor-
rection term that is neglected in passing to the continuum
limit. Excellent agreement is seen inFig. 12aeven when
the reaction is fast (in dimensionless units), that results in a
thin boundary layer within the system. Similar agreement is
obtained for transient situations as well, as indicated by an
example inFig. 12bin dimensionless time units. The overall
agreement indicates the validity of our gradient MC simu-
lation as well as the accuracy of continuum equations in the
absence of intermolecular forces down to small scales and
for relatively large gradients.

Next we present an example when intermolecular forces
are important.Fig. 13 depicts steady state concentration
profiles for one-dimensional and two-dimensional simu-
lations for a piecewise constant potential extending over
various possible number of neighbors in two-dimensions
(for details see[130]). The one-dimensional simulations
are done with the same total number of neighbors in each
case as the two-dimensional simulations, and thus a longer
potential than in the two-dimensional. It is found that re-
pulsive interactions between species considerably increase

Fig. 13. Validation of the mesoscopicEq. (5) (circles) with gradient
continuous time MC (G-CTMC) simulations in one- (dotted lines) and
two-dimensions (solid lines) for a piecewise constant potential of repulsive
interactions (dimensionless potential strength ofβw = 1). The straight
line corresponds to a Fickian case. The numbers displayed indicate the
number of neighbors included in the two-dimensional simulations. For
the one-dimensional simulations, the same total number of neighbors has
been used as in the two-dimensional simulations (e.g. four for the first
nearest neighbor case corresponding to a square lattice) by appropriately
adjusting the potential length. The boundary conditions are the same as
in Fig. 12.



S. Raimondeau, D.G. Vlachos / Chemical Engineering Journal 90 (2002) 3–23 19

the diffusion flux over the Fickian case (a straight line de-
picted in Fig. 13). As the dimensionality of cubic lattices
or the coordination of the lattice increases, shorter-range
interactions are needed to achieve quantitative agreement
between the mesoscopic and MC simulations. It is expected
that for practical systems, the mesoscopic framework will
be sufficiently accurate. As a final point, for sufficiently
strong and long interactions, complex patterns and even
uphill diffusion can be seen for different potentials, which
is beyond any classic continuum diffusion-reaction model
of a single species[130]. Note that the Stefan–Maxwell
equations can also predict uphill diffusion for binary
non-interacting mixtures but they cannot treat, in a fun-
damental way, intermolecular forces[136]. Furthermore,
while continuum Cahn–Hilliard-type equations can predict
uphill diffusion for a single interacting species[137], there
are still used in a phenomenological manner, limited to at-
tractive interactions only, and neglect higher order gradient
corrections.

The continuum nature of mesoscopic equations enables
one to apply homogenization techniques in order to study
spatially heterogeneous materials. An interesting applica-
tion encompasses faceted catalysts encountered in partial
oxidation reactions (e.g. gauzes) and supported catalyst
particles. In both cases, coupling between various patches
(facets or support and catalyst particles) of the system is
important. Such an approach can replace current intensive
MC simulations [72]. We have recently developed such
homogenized mesoscopic equations and validated them
through DNS[138]. For example, homogenization of the
above mesoscopic equation gives
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All the summations, here, extend over the dimensionality of
the problem. Furthermore,a0 andb0 are the leading order
terms ofa and b, which indicate the type of medium,u0
is the leading order term of the solutionu, and W is the
domain. Details of the derivation, numerical procedures, and
examples, for diffusion as the only mechanism, are given
elsewhere[130].

Currently, mesoscopic equations have been derived for
a single species and for simple adsorption, desorption, and
surface reaction mechanisms. It would be then desirable to
extend them from model systems to more complex situations
of practical interest and compare simulation results to exper-
imental data. Furthermore, coupling of mesoscopic models
with continuum models is highly desirable.

7. Summary and outlook

We have described a multiscale, hierarchical computa-
tional framework for modeling chemical reactors, to describe
phenomena that occur over multiple length and time scales
and are strongly coupled. We have focused mainly on cat-
alytic systems, and specifically on the oxidation of CO and
CH4 on noble metals, as specific examples for illustration.
The computational feasibility of such multiscale simulations
linking scales from the quantum, to the molecular, to the
mesoscopic, to the continuum has been demonstrated. An
efficient methodology for parameter optimization has been
also discussed. Finally, homogenization of mesoscopic equa-
tions has been introduced that enables one to predict spa-
tially average properties of polycrystalline catalysts while
retaining molecular and quantum level information. This ap-
proach along with further developments in mesoscopic mod-
els will pave the way in linking all scales. Pattern formation
on catalytic surfaces and first principle simulations of pro-
cesses in membranes and catalyst particles are just examples
where this mesoscopic modeling is expected to have direct
impact.

There is a continuous need for more accurate and pre-
dictive models with input from first principles. Therefore,
one may expect intensification of research efforts on mul-
tiscale modeling. Multiscale algorithms remain though
computationally demanding. Thus, modern model reduc-
tion techniques (e.g. computational singular perturbation,
low-dimensional manifold theory, etc.) employed for trans-
port and gas-phase chemistry problems can be easily ex-
tended to these multiscale systems to enable on line control
and practical reactor design. One example of multiscale
model reduction has just appeared[15], but more are ex-
pected in the future. Furthermore, robustness and efficiency
of solution of multiscale problems are expected to grow in
the future.
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